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INTRODUCTION 

Bioremediation (BR) is one of the most efficient methods for removal of heavy-metal-

from the contaminated soil and groundwater. This procedure is less harmful to the 

environment and more economical than conventional chemical and physical techniques, 

which are very costly and inefficient at low metal concentrations and result in large 

volumes of hazardous sludge [1,2]. The ability of microorganisms to breakdown 

contaminants is dependent on environmental conditions for growth and metabolism, 

which include favorable temperature, pH, and moisture [3,4]. Microorganisms are crucial 

for the removal of contaminants from soil, water, and sediments because of their benefits 

over alternative remediation techniques. These approaches of HMs removal are eco-

friendly and cost effective. Additionally, they aid in the restoration of the natural 

ecosystem by preventing ongoing contamination [5]. Also, the contamination of heavy 

metals (HMs) has become a severe hazard to the ecosystem [6]. In the industrial sector, 

heavy metal is a profitable industry. Nevertheless, it is also a major environmental 

problem everywhere [7,8]. Also, the environment contains natural, agricultural, solid 

waste, inland effluents, and air sources, for the additional heavy metal sources. Large 

portions of the earth have been polluted by mining, electroplating, metallurgical 

smelting, pesticide, and fertilizer use in agricultural fields [9]. 
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ABSTRACT 

Nano-bioremediation, an emerging eco-friendly strategy that integrates nanotechnology 

and biological processes to mitigate the contamination of heavy metals from the 

environment. To explores synergistic interactions between plants and microorganisms, 

focusing on their potential role in enhancing nano-bioremediation are highly demandable. 

This study focuses several key mechanisms including biosorption, bioaccumulation, 

biomineralization, and enzymatic reduction, the coordination of microorganisms and 

plants in tolerating and transforming toxic heavy metals into less toxic forms. The potential 

role of microorganism-assisted nanomaterials, including nano-biosorbents and nano-

catalysts in phyto- and eco-environments were updated. This review also highlights recent 

studies on the significance of plant-microbe systems and nanomaterials in heavy metal 

remediation, challenges such as microbial survival, scalability, and ecological impacts were 

addressed, alongside potential solutions. Finally, this critical review provides new insights 

into harnessing plant–microorganism interactions for nano-bioremediation, presenting an 

eco-friendly approach to address global heavy metal pollution, and it shows a sustainable 

way of clean environment. 
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Furthermore, HMs that find their way into the environment linger and seriously 

endanger creatures that come into proximity to them due to toxicity. Although very low 

quality is crucial for the biological operations of plants and animals, but in high dose is 

toxic and inhibit metabolism in other organisms [10]. Toxic heavy metals, such as lead 

(Pb), cadmium (Cd), mercury (Hg), chromium (Cr), zinc (Zn), uranium (Ur), selenium 

(Se), silver (Ag), gold (Au), nickel (Ni), and arsenic (As), which are not useful to plants, 

inhibit plant growth, photosynthetic and enzymatic activities, and essential plant 

nutrition [11]. Moreover, even at low concentrations, heavy metals are carcinogenic to 

humans [12]. Conversely, bioremediators are biological agents used in bioremediation to 

help to clean contaminated sites. Among the most often used bioremediators are bacteria, 

archea, and fungi [13]. The application of bioremediation, a biotechnological method that 

uses microorganisms to solve and eliminate environmental concerns caused by different 

pollutants through biodegradation. 

Scientists are coming to an agreement on how to reduce pollutant release and mitigate 

their impacts using living creatures such as plants, which is known as phytoremediation 

or bacteria, which is referred to as bioremediation [14]. To address these issues, biological 

methods such as biosorption, bioaccumulation, biodegradation, and bioremediation are 

used to remove heavy metal ions, providing an appealing alternative to physicochemical 

methods [15]. These methods are potentially simple, low cost, more effective, ecofriendly, 

and a self-sustaining option for wastewater amelioration, which is gaining new attention 

nowadays [16]. Also, the chemical methods for heavy metal remediation pose health 

hazards such as toxicity and environmental risks, coupled with limitations like high costs 

and inefficiency under varying conditions. In contrast, microorganism-assisted 

approaches offer eco-friendly, sustainable, and cost-effective alternatives, leveraging 

natural mechanisms for safe and effective HMs removal [2,17]. 

The goal of this review is to explore current trends in the application/role of 

microorganisms in bioremediation with their interactions for nano-bioremediation, find 

the necessary background information to fill in any gaps in this theme area. In this study, 

the nono-bioremediation strategy provides a sustainable way for removing or 

minimizing HMs from the plants, soils and environments. 

 

SOURCES OF HEAVY METALS 

Natural resources, such as air, soil, and water ecosystems, have been discovered to 

contain HMs, agricultural chemicals, industrial solvents (especially chlorinated solvents), 

and other types of pollution [18]. The use of HMs by industry and agricultural sectors 

has resulted in massive amounts of HMs being relinquished and disposed of 

inadvertently in most ecosystems [19]. Several agricultural practices, such as the 

irreversible use of urban sewage sludge, industry-based practices, such as composting 

and burning of garbage in a variety of techniques, and vehicle emissions unintentionally 

introduce toxic metals (Cd, Cr, Pb, Hg, As, Cu, Zn, and Ni) into soils (Figure 1). Motor 

vehicle emissions (Pb) [20], engine wear (Cd, Cu, and Ni) [21], and tire abrasion (e.g., Zn). 

According to Hunter [22], arsenic could have positive effects on gene silencing and 

methionine metabolism in animals. Arsenic and cadmium are naturally present in very 

small amounts in the Earth's crust and probably weren't conscripted during evolutionary 

processes because they are less abundant than P and Zn, which occupy adjacent columns 

in the periodic table, respectively [23]. 

The accumulation of potentially harmful quantities of As and Cd in soils is largely due 

to anthropogenic activity [24]. Metal toxicity is critical for living organisms, including 

microbes, plants, animals, and humans. However, the toxicity varies depending on the 
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organism, while most of the 80 metals detected are essential for human functioning 

biology (e.g., Fe, Mg, Zn), others, such as Pb, Hg, and Cd, are among the oldest human 

toxicants [25]. A few heavy metals, including Fe, Cu, and Zn, are necessary 

microelements, whereas others, like Cd and Pb, have no beneficial function and are 

harmful even at low quantities (Figure 1). The contamination of soil and aquatic 

ecosystems is important, because metals are not biodegradable like other organic 

contaminants, they accumulate in terrestrial, aquatic, and marine ecosystems [26]. 

 

Figure 1. Sources of HMs in the environment. The figure illustrates the various anthropogenic and natural sources of 

heavy metals, such as industrial discharge, agricultural runoff, natural mineral deposits, soil waste and toxic chemicals. 

 

HEAVY METALS CONTAMINATION AND PUBLIC HEALTH RISK 

HMs contamination problem is one of the major concerns worldwide. HMs toxicity 

varies due to their toxicity levels. The HMs are fluently added to environments from 

different sources (Figure 1), and those can easily deposit into living organisms [27]. They 

are all metals that have an atomic weight higher than that of iron (55.8 gmol–1), and they 

are found in the environment. However, some metals have an atomic weight lower than 

that of Fe. For example, Cr, and some metalloids, like As and Se, are also called "heavy 

metals" [28]. Many types of HMs can be micronutrients for humans. These include Cu, 

Fe, Mn, Mo, Zn, and Ni. They can also be toxic to humans if being exposed to them for a 

longer period, like Hg, Pb, Cd, Cu, Ni, and Co. Contamination by HMs has a lot of bad 

effects, not just on animals and plants but also on human health [29]. As an example, Zn 

is a component of a few enzymes, such as enzymes that break down carbohydrates, 

proteins, and peptides, as well as enzymes that make RNA and ribosomes in plants. 

Copper helps plants do a lot of things, like photosynthesis, respiration, carbohydrate 

distribution, nitrogen and cell wall metabolism, seed production, and disease resistance, 

but at high concentrations, these metals can harm cells [30]. The Cd is highly toxic for 
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biological processes and very harmful to organisms when it builds up even in low 

quantities. Deposition of HMs depends on metal ions specific ion-binding processes to 

specific locations, and cellular structure variability. HMs ions, have a strong electrostatic 

attraction and great binding affinities with these same locations. The toxicity outputs of 

HMs are critical for basic genetic molecules of organisms. The structures and 

biomolecules, such as cell wall enzymes, DNA, and RNA, become unstable because of 

this, which is ultimately responsible for occurring mutations at molecular levels, as a 

result altering genetic levels,  physiological difficulties, illnesses, and even cancer [31]. 

 

HEAVY METAL TOXICITY IN PLANTS, SOIL, AND ENVIRONMENT 

Globally, due to the persistence, high toxicity, and recalcitrant nature, metal 

contamination has now become a serious concern in plants, soil, and the environment 

(Figure 2). These toxic metals have posed a serious threat to the environmental stability 

and health of all living organisms [2]. Like other living organisms, plants are not resistant 

to high concentrations of HMs in the air due to human activities and environment. Trace 

amounts of HMs enhance plants by acting as essential micronutrients. According to 

Lopez-Vargas et al. [32], copper can improve the flavor and color of floral arrangements, 

fruits, and vegetables by increasing sugar content in plants. Zn is an essential component 

of the enzymatic system as well as the metabolic processes of plants [33], and 

photosynthetic compounds are particularly influenced by HMs [34]. Heavy metals have 

been shown to accumulate in plants, where they interfere with the normal metabolic and 

biological processes in the plant, and eventually leading to severe yield losses [35]. 

HMs prevent seed germination by adversely influencing the processes, which in turn 

reduces the establishment of the entire stand [36]. Due to the high concentration of 

malondialdehyde (MDA) and H2O2, HM also impairs the water status of plants, damages 

the stability of their membranes, and increases the loss of crucial osmolytes. It shows that 

different chemical, physical, and biological methods for HMs removal from soils have 

been in practice globally. Plants consume and accumulate HM that is present in the soil 

at very high concentrations and eventually reaches human nutrition through the food 

chain [37]. Recently, microbes have gained a lot of attention from scientists worldwide. 

Biosorption, bioaccumulation, biovolatilization, biomineralization, oxidation and 

reduction, bioleaching, and the synthesis of bio-surfactants are some of the methods by 

which the bacteria extract the heavy metals from the soil [17]. 

Plants and microorganisms are used as biological methods to treat HMs containing 

polluted soils [38]. Hints, there are also certain drawbacks to these techniques in terms 

of long durations, environmental sensitivity, and toxicity of contaminants [39].  High 

levels of HMs in soil and water are representative examples of human activities which 

have a significant effect on the environment and present a huge risk [40,41]. According 

to Abd Elnabi et al. [42], living plants and animals are at serious risk due to the toxic 

HM's persistence in the soil environment. For terrestrial plants, the primary points of 

contact with hazardous heavy metals (HMs) are the roots [43]. Additionally, microbes 

lower the concentration of heavy metals (HMs) in soil. For example, Aspergillus niger 

shown a notable capacity to bioaccumulate Cd and Cr [44], and Stenotrophomonas 

rhizophila also considerably reduced Pb and Cu by 76.9% and 83.4%, respectively [45]. 

Microbes have a large surface area to adsorb the HMs because of their small size, which 

lowers the total amount of HMs available [46]. Soil biology is indispensable with respect 

to soil quality maintenance, which again is very important for sustainable agriculture. 

Human activities have emerged as the prime source of HMs and have disturbed the soil 

microbes, soil fertility, and productivity [47]. 
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However, their bioaccumulation and biomagnification attributes in the food chain are 

highly threatening to the environment due to their accumulation in soil and plants [48]. 

Application of chemical fertilizers and pesticides can enhance the risk of HMs 

contamination in the soil.  The chemical toxicity outputs lead to build-up in crop tissue 

grown in the contaminated soil [49]. Microbial bioremediation methods have recently 

demonstrated significant promise in cleaning up contaminated soils. One type of green 

technology is the utilization of microorganisms' metabolic processes to remove heavy 

metal contamination, and most HMs have been classified as hazardous overall. 

 

Figure 2. Toxicity of HMs in plants, soil, and environment. The figure represents the toxic effects of HMs on plant 

physiology, soil fertility, and overall environmental health. The figure highlights  specific mechanisms of toxicity such 

as disruption of enzymatic activities and oxidative stress in plants, alongside soil degradation. 

 

NANO-BIOREMEDIATION OF HEAVY METALS USING MICROORGANISMS 

Nanoparticles-based bioremediation is an emerging and highly efficient approach for 

large-scale environmental cleanup, minimizing toxic repercussions. In the relentless 

march of technology, bioremediation has evolved into nano-bioremediation, employing 

nanoparticles and microbes to offer eco-friendly solutions for tackling hazardous 

environmental pollutants (Figure 3). 

Microorganisms-based HMs removing or minimizing are more efficient approaches 

compared to traditional methods [50]. Metals like As, Cd, and Pb are highly toxic even 

at low concentrations [51]. Microbial bioremediation immobilizes these metals; for 

example, Morganella psychrotolerans produces silver nanoparticles for heavy metal 

removal [52], while iron oxide nanoparticles with polyvinyl pyrrolidone (PVP) and 

Halomonas sp. effectively remediate Pb and Cd [53]. Additionally, silica nanoparticles, 

Pseudomonas aeruginosa, and graphene oxide remove polycyclic aromatic hydrocarbons 

(PAHs) [54], and Halomonas immobilized with magnetic NPs degraded Pd metal [55]. 

Moreover, Bacteria synthesize diverse nanoparticles used for immobilization and 

mobilization of metals [56], with strains like Bacillus cereus (PMBL-3) and Lactobacillus 

macroides (PMBL-7) effectively remediating HMs such as Cd, Cr, Pd, and Cu [57]. 

Interestingly, Myconanotechnology employs fungi for bioremediation (Table 1), with 

various mushroom species effectively remediating soil contaminants [58, 59]. Fungi such 
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as Fusarium solani are increasingly being used in the process of nanoparticle 

manufacturing, because of their resistance to heavy metals [60], while Trichoderma 

harzianum degrades pentachlorophenol, and Cryptococcus sp. displays resilience to HMs 

[61]. 

The chemical structure and molecular weight of microplastics (MPs), along with 

environmental conditions, influence microbial-driven degradation. This process involves 

biodeterioration, bio-fragmentation, biosynthesis, and mineralization [82]. Although the 

precise mechanism of Pseudomonas sp. in degrading MPs particles remains elusive, 

research suggests the involvement of chitinase degradation [83]. Microorganisms utilize 

metal-based nanoparticles (MNPs) as a carbon source for growth, aiding in the 

degradation of high molecular-weight plastics [84]. The microbial degradation of plastic 

fragments offers a green solution, but controlling changes in plastic pollution relies on 

various factors. Therefore, the utilization of effective microbes can be a suitable approach 

for eliminating MNPs [81, 85]. However, microbial degradation of MNPs is still in its 

infancy, as the characterization process is very slow, and incomplete mineralization is 

another limitation [86]. MNPs present in municipal solid waste (MSW) can harbor 

various microinorganic and organic pollutants, posing risks to the environment and 

human health as they enter the food chain [87]. Indigenous microbial communities 

within MSW and sewage sludge exhibit plastic degradation capabilities. Recent studies 

have shown that mesophilic Stenotrophomonas panacihumi can convert polypropylene (PP) 

into low and high-molecular-weight forms after 90 days [88]. The persistence of 

antibacterial nanoparticles beyond a threshold poses a threat to soil microbes, potentially 

inhibiting nitrogen-fixing microbes, leading to stunted plant growth and reduced 

production [89]. 

In the perspective of environmental bioremediation, leveraging nanotechnology 

alongside microbial assistance emerges as a highly efficient strategy, as evidenced by the 

effective removal of HMs and pollutants from soil and wastewater. While nano-

bioremediation offers promising solutions, the persistence of antibacterial nanoparticles 

poses challenges to soil microbial communities and ecosystems. Despite advancements, 

microbial degradation of micro-nano plastics remains in its nascent stages, highlighting 

the need for further research to optimize biodegradation processes and minimize 

environmental risks. 

 

Figure 3. Role of nanoparticles in environmental clean-up. The figure depicts the sources of nanoparticles and their 

mechanisms of action in remediation of contaminated soil, water, and air/environment. It outlines the enzymatic 

processes involved and the effectiveness of various nanoparticles in sequestering or degrading heavy metal pollutants. 

These extended captions provide a comprehensive description of each figure, ensuring that readers can fully 

understand the implications and contexts of the visual data presented. 
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Table 1. Potential implication of microorganisms for bioremediation of HMs from plants, soils 

and environments. 

S. No.  Microorganisms  Heavy metals  Remarks Ref. 

1 Azospirillum brasilense, 

Bradyrhizobium japonicum 

As Mortality reduction, increase 

plant growth, and nitrogen 

content in Glycine max. 

[62] 

2 Bacillus cereus Cd, Cu, Ni, Pb, 

Zn 

Improves phytoremediation 

efficiency in Zea mays. 

[63] 

3 Pseudomonas lurida Cu Increase Cu accumulation in 

roots and leaves of Helianthus 

annuus. 

[64] 

4 Aspergillus niger, Ascophyllum 

nodosum, Bacillus firmus, Chlorella 

fusca, Oscillatoria anguistissima 

Pb, Zn, Cd, Cr, 

Cu, Ni  

Removal of HMs from 

wastewater 

[65] 

5 Bacillus subtilis, B. licheniformis, 

Streptomyces pactum 

Cu, Cd, Pb, Zn Increase growth of Brassica 

juncea. 

[66] 

6 Micrococcus luteus Pb Remediate moderately Pb 

from soil. 

[67] 

7 Funnelliformis mosseae Cd Enhance growth and Cd 

accumulation of Solanum 

nigrum. 

[68] 

8 Bacillus sp. As Enhance As uptake and 

removal capacity in 

Vallisneria denseserrulata. 

[69] 

9 Glomus mosseae Cd, As, Pb Enhance plant growth, 

photosynthetic pigments in 

Pisum sativum. 

[70] 

10 Saccharomyces cerevisiae  Cr, Ni, Cu, Zn  HMs removal using dead 

biomass 

[71] 

11 Rhizophagus irregularis Cr Enhance the photosynthetic 

performance, tolerance index, 

transportation index of 

Brachiaria mutica. 

[72] 

12 Spirogyra sp., Cladophora sp.  Pb, Cu  Wastewater treatment [73] 

13 Spirogyra sp., Spirullina sp.  Cr, Cu, Fe, Mn, 

Zn  

HMs uptake [74] 

14 Humicola sp. As Enhance plant growth of 

Bacopa monnieri. 

[75] 

15 Hydrodictylon, Oedogonium, 

Rhizoclonium sp. 

V, As Biosorption dried algal 

biomass 

[76] 

16 Rhizophagus sp., Funelliformis sp. As Increase aerial parts of Pteris 

vittata. 

[77] 

17 Piriformospora indica As Accumulate As in roots of 

Artemisia annua. 

[78] 

18 Rhizophagus irregularis Cd, Zn Increase the activities of 

ascorbate peroxidase (APX) 

and SOD in Phragmites 

australis. 

[79] 

19 Streptomyces spp. B1, B2, B3 Cd, Pb, and Zn Enhance plant biomass and 

decrease oxidative stress in 

Salix dasyclados. 

[80] 

20 Mesorhizobium loti, Ensifer adhaerens, 

Rhizobium radiobacter 

Cd, Pb Cr, Cu, Zn Increase nodule number in 

Robinia pseudoacacia. 

[81] 

  

LIMITATIONS AND FUTURE PROSPECTS 

The application of microbes in remediation of HMs is known as nano-bioremediation 

and has drawn significant attention due to its efficient and environmentally friendly 

nature. However, several limitations have also been noticed during its widespread 

application. Saharan et al. [90] observed, the HMs toxicity in microbial communities 
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affect the metabolic activity of these microorganisms and consequently their overall 

efficacy. In contrast, the environmental persistence of engineered NPs expands concerns 

about their potential ecotoxicological impacts, including bioaccumulation and non-target 

effects [91]. Laboratory findings often struggle to translate to field conditions due to 

variations in soil composition, pH, temperature, and competing ions, alongside 

unpredictable interactions among nanoparticles, plants, and microbes that are not fully 

understood [92, 93]. The characteristics of engineered nanoparticles can change due to 

agglomeration or dissolution, affecting their reactivity and potential toxicity [94]. 

Additionally, the long-term impacts of these nanoparticles, such as their accumulation in 

plant tissues or migration into water sources, remain poorly characterized. The 

scalability of nanoparticles is limited by expensive synthesis techniques and the high 

costs of large-scale field applications, especially in resource-constrained regions. 

Nanoparticles can introduce new environmental contaminants and potentially disrupt 

soil microbiomes, altering nutrient cycles and ecosystem balance due to high 

concentrations. The adoption of nanotechnology is complicated by inconsistent 

regulations across different regions and the absence of standardized protocols for 

assessing environmental safety and long-term impacts [95]. 

The environmentally friendly biodegradable nanoparticles will alleviate the worries 

about persistence and eco-toxicity effects [68]. Integration with omics technologies, 

particularly genomics and proteomics, will provide deeper insight into the interaction of 

microbes with nanoparticles, thereby facilitating the design of tailored bioremediation 

strategies for specific contaminants [96]. Real-time monitoring systems are integrated 

with nano-bioremediation, also including biosensors that enhance process efficiency 

while ensuring site-specific applicability [17]. Advancing the field of nano-

bioremediation of heavy metals through plant-microorganism interactions involves 

several promising directions. Elucidating mechanisms at the molecular level using 

comprehensive omics approaches and real-time monitoring techniques, such as 

synchrotron-based spectroscopy, can support deep insights into processes involved in 

HM and nanoparticle transformations.  

Developing eco-friendly and cost-effective nanomaterials through green synthesis 

methods and creating biodegradable nanoparticles can minimize environmental impact 

and production costs. Integrating nano-bioremediation with different remediation 

strategies, such as phytoremediation and chemical techniques, can enhance contaminant 

removal efficiency and manage complex pollution scenarios more effectively. 

Conducting field trials and validating long-term effectiveness under various conditions 

is crucial for assessing the feasibility and sustainability of nano-bioremediation methods. 

Additionally, the application of advanced models and tools, including AI and machine 

learning, can optimize remediation processes and customize approaches based on local 

environmental conditions. Harmonization and the establishment of standardized risk-

benefit analyses are essential for gaining broader acceptance and ensuring the 

responsible implementation of nano-bioremediation technologies. These efforts will help 

refine nano-bioremediation strategies, making them more efficient, scalable, and 

environmentally safe. Therefore, the application of advanced nano-based tools and 

sustainable restoration of ecosystems from HMs-contaminated environments would be 

supportive for making smart and HMs-free green environments. 
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CONCLUSIONS 

This study explores effective strategies for microorganism-assisted HMs remediation, the 

role of plant-microbe interactions for nano-bioremediation of HMs, and strategies for 

transforming toxic HMs into less toxic forms. This study updates the techniques like 

biomineralization, biostimulation, and mycoremediation, discusses how microbe-

assisted phytoremediation is crucial for minimizing HMs contamination, and shows 

sustainable solutions for maintaining of HMs toxicity. This review also highlights the 

prospect of using nano-environmental biotechnology tools for mitigating HMs toxicity 

in plants, soils, and environments. This updated study with eco-friendly approaches to 

HMs removal from environments could be useful for minimizing HMs toxicity and 

converting to smart-green earth. 
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